Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain.
نویسندگان
چکیده
In this paper, direct measurement by atomic force microscopy (AFM) of the cell surface softness of a fibrillated oral streptococcal strain Streptococcus salivarius HB and of a nonfibrillated strain S. salivarius HBC12 is presented, and the data interpretation is validated by comparison with results from independent techniques. Upon approach of the fibrillated strain in water, the AFM tip experienced a long-range repulsion force, starting at approximately 100 nm, attributed to the compression of the soft layer of fibrils present at the cell surface. In 0.1 M KCl, repulsion was only experienced when the tip was closer than approximately 10 nm, reflecting a stiffer cell surface due to collapse of the fibrillar mass. Force-distance curves indicated that the nonfibrillated strain, probed both in water and in 0.1 M KCl, was much stiffer than the fibrillated strain in water, and a repulsion force was experienced by the tip at close approach only (20 nm in water and 10 nm in 0.1 M KCl). Differences in cell surface softness were further supported by differences in cell surface morphology, the fibrillated strain imaged in water being the only specimen that showed characteristic topographical features attributable to fibrils. These results are in excellent agreement with previous indirect measurements of cell surface softness by dynamic light scattering and particulate microelectrophoresis and demonstrate the potential of AFM to directly probe the softness of microbial cell surfaces.
منابع مشابه
'Soft-particle' analysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius.
The electrophoretic mobility of microbial cell surfaces can be analysed in terms of a so-called soft layer model, in which the electrophoretic mobility is described as originating from the potentials over the surface charge layer and the membrane fixed charges. Often, the polyelectrolyte layer deforms under the influence of ionic strength variations. In the soft layer analysis of electrophoreti...
متن کاملUltra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy
Objective(s): During the last years with increasing resistant bacteria to the most antibiotics bacteriophages are suggested as appropriate treatment option. To investigate lytic activity of bacteriophages there are indirect microbial procedures and direct methods. The present study to complement microbial procedures and investigate ultra-structural characteristics of infection bacterium-phage u...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملSurface Evaluation of Resin Zein Films Containing Sugar Plasticizers by Permeability and Atomic Force Microscopy Analysis
Zein is one of the best biopolymer for edible film making and sugars are natural plasticizers for biopolymers. In this research, sugars (fructose, galactose and glucose) at three levels (0.5, 0.7, 1 g/g of zein) were used as plasticizers for zein protein films and their water vapor permeability (WVP), oxygen permeability (OP) and atomic force microscopy (AFM) topography were studied. The p...
متن کاملExploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 78 5 شماره
صفحات -
تاریخ انتشار 2000